Friday, 14 June 2013

NP-complete


In computational complexity theory, the complexity class NP-complete  is a class of decision problems. A decision problem L is NP-complete if it is in the set of NP problems and also in the set of NP-hard problems. The abbreviation NP refers to "nondeterministic polynomial time."
Although any given solution to such a problem can be verified quickly, there is no known efficient way to locate a solution in the first place; indeed, the most notable characteristic of NP-complete problems is that no fast solution to them is known. That is, the time required to solve the problem using any currently known algorithm increases very quickly as the size of the problem grows. This means that the time required to solve even moderately sized versions of many of these problems can easily reach into the billions or trillions of years, using any amount of computing power available today. As a consequence, determining whether or not it is possible to solve these problems quickly, called the P versus NP problem, is one of the principal unsolved problems in computer science today.
While a method for computing the solutions to NP-complete problems using a reasonable amount of time remains undiscovered, computer scientists and programmers still frequently encounter NP-complete problems. NP-complete problems are often addressed by using approximation algorithms.

Euler diagram for P, NP, NP-complete, and NP-hard set of problems. The left side is valid under the assumption that P≠NP, while the right side is valid under the assumption that P=NP